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Development of A Theory of Information Flow and Analysis*

M.C. Yovits, L.L. Rose, J.O. Abilock
The Ohio Stdte University

Columbui, Ohio

Abstract

This paper describes research being carried out at The
Ohio State University leading toward a general theory of in-
formation flow and analysis. The objectives of the Nations?
Science Foundation-sponsored research program' include th^
followingt1(1) to develop a theory of information flow and
analysis; (2) to identify

important parameters and variablesin the information process which can be quantified and mea-sured; (3) to develop relationships among the variables whichdescribe their behavior and limitations; (4) to apply this,
theory. to specific practical

situations, ttarticblarly those
involving science information; and (5) to develop both simu-lation and experimental models for quantification and vali-
dation of the theory.

The generalized todel of information flow is shown to
represent virtuelly,anydecision situation. Using this modelwe derive a nurbet of measures. Two of the more importantm
ones are: I = m EP621. J2 - T and

1=1
M

A AME= i!1
i

Plai) EV /Max W k1. ). With these measures we

can quantify the amount of information (I) in a decision
state and evaluate decision-maker effectiveness ME). We
can also determine the value of information through its

* Portions of this paper were presented at the American
Association for the Advancement of Science Meeting in
Denver, Colorado, Febioary 25, 1977.

This material in paned upon research sypported by the
National Science Foundation, Division Of Science Infotma-

, tion, under Grant Numbers GN 41628 aad DST 76-21949.
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effec Jrt ME. Rules are derived for use by the decision-
maker for assimilating new data in his estimates of values
and for use in determining selection probabilities for var-
ious courses of action. These rules enable feedback, learn-
ing, and alternative selection to,be.modeled, measured, and
evaluated. Research is underway to validatesthe model real-
istically and to apply it to practical situations.

A further possible result of this research is the devel-
opment of a decision calculus which will establish guidelines .

for decision-making given certain situa ions. These guide-
lines should permit quantification of t e importance of
information in the decision-making procss.

13ackground

. In several previous papers (1,2,31, we have discussed
some of the properties which should exist if information
science is ever to become a "true" science similar to physics
or chemistry. It has been pointed out that a number of ana-
lytical expressions and concepts should exist71which can be
used to describe and analyze information flow. A framework,
called a "generalized information, system" was suggested which
permits the development of these concepts and expressions.

The wor0 "information" takes on a variety of meanings
depending upon the context in which it is used. Otir approach

relates information to its effectiveness and thus its use and
value. Information is frequently used rather specifically in
the sense of the Shannon and_Weaver "infOrmation theory"
(more accurately called "communication theory"). In this
sense the context of the message is of no significance; the
theoryis concerned with the probability of the- receipt of
any particular message for various conditions of the trans-
mission system. While this may be of interest in information
science, it is certainly notithe major nor even a large part
of information science. Such a treatment does tot consider
the vital areas of concern, almost all of which are involved
with'the context, meaning, and effectiveness of the message.
For these reasons, the Shannon and Weaver approach is gener-
ally regarded as too restrictive to be a basis for the formu-
lation of an information science. At the other extreme, the
treatment of information to be synonymous with knowledge
appears to be far too broad to lead to meaningful-and useful
principles or relationships in information science.'

In our formulation WP treat information to data of
value in decision-making. Lter in the paper we define in-
formation quantitatively and rigorously. While our formula-
tion {nay somewhat delimit the total range of interest in an

5



3

intellecfual sense, it does have virtually universal applica-
bility with regard to any potential applications for informa-
tion. The authors also feel that any more general definition
is not amenable to the quantification and conceptualization
necessary to establish meaningful. relationships, An implica-
tion of this definition then is tbat'information is used only
for decision-making and that the decision maker has only the
resource oftinformation available to him.\, Thus, information
and decision-making are very closely bound together in our
general model.

Levels of Information

Research in the general area of information theory
started in the mid-1940's. The basic theory, as already,
noted, was established with the fundamental work of Claude
Shannon and Warren Weaver (4,5).- This theory covers the
transmission-of messages over a channel, independent of mean-
ing. Their defined measure of information, whiCh relates to
the entropy of the interpretation of the sequene of bits
transmitted, bears little relation to the layman's concept of
information. This is Acknowledged byyeaver, who defines
three levels of information, the first of which (the techni-
cal level) it his concern.

The second level of information is concerned with the
meaning of information its semantic content. Significant
research in this area has been performed by Carnap, Bar-

Winograd, and otheri (6,7). -Their research has
attempted to measure the semantic content of simple declara-
tive sentences within their language system. In this con-
text, they do not refer explicitly to the procRss of communi-
.cation between individuals. While the level information
definition is concerned with the successful transmission of a
message from point a to point b, the level 2 definition of
information is concerned with the successful interpretation
or understanding of a message once it is received.

The third level of information deals with the effective-
ness of information - i.e., how information, once received
and understood, is utilized. Hence the level 3 model is
imbedded in a decision-making environment, since that is the
only framework in which one can observe information utiliza-
tion. Little research has thus far been accomplished in this
area, even though it is probably the area of greatest signif-
icance, interest, and application (8,9,20,11). Our research
is in this area in an effort to develop a general and useful
theory of information (1,2,3).

6
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There is, of course, a great body of literature in the
decision-making field. Some of the typical references are by

such researchers as Morris (25), Raiffa (26), Schlaiffer
(17), and Radnor (18). An excellent survey by Bandyopadhyay
(19) provides further references to_ research in this area.
Unfortunately, we find that the approaches described in the
literature are neither general enough nor sufficiently flexi-
ble to represent the'situation adequately with regard to the
use of information. In parti9ulart there is little in the
literature perta,ning to the non- exlSert decision maker,

whereas information will be of perhaps greatest value in this
situation. Furthermore, we believe it is necessary to con-
sider the entire decision process which is generally repeti-
tive over periods of time. This process heavily involves
feedback information using the results of previous decisions.

The General Model

Our general model of information flow and analysis is
illustratedin Figure 1, and we briefly describe its opera-
tion. This model can be used to describe most, if not all,
information-dependent activities. It provides a way of look-
ing at any information-decision interaction and defining the
role and flow of inforMktion in the system. The IAD module
(InformationACquisition and Dissemination) processes data
for the system. Both exogenous (external environmental) and
endogenous (internal feedback) data are acquired by the IAD,
module. Whenever a decision must be made, the DM module
(using all of the data available) establishes the possible

courses of action and selects/the "best" one to execute. 'Tbe
Execution module executes the DM-chosen course of action,
according to all pertinent external environmental factors,
leading to various outcomes depending on the alternative
executed. These outcomes will be some observable quantities.
They must be observable in physical sense if they are to
have any effect. The Transformation module takes all observ-
ables of the alternative executed and turns these observa-
tions into data. These data are fed back into the IAD module
and we have come full circle, followinktbe flow of informa-
tion in the model.

This model of a generalized information systn rests
upon three basic hypotheses:"

HI. Informationis data of value in decision-making;
H2. .information gives rise to observable effects;
H3. Information feedback exists so that the Decision

Maker will adjust his model for later similar
decisions.
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The first hypothesis requiies that_information be used in a
decision7making context. If information is received, but
never used ox applied to a subsequent decision, then its
effect does not exist and it cannot be measured. Hypothesis
2 assures that if the decision-maker (DM) does make a deci-

, sion, then the outcome of that decision can be observed and
measured., This precludes decision-making in a vacuum.
Observables must exist'if the decision-maktpg and the courses
of action are to be evaluated. Hypothesis 3 indic4tes that
the DM learns from feedback data resulting frpm previous
decisions, Note that the' observed outcomes of repetiti've or

related decis'on-making situations provide data upon which
future decisions will be made.

Generalized Decision Making
.

This model, is dynaFic.in natures even in a stationary
decision situatiathe DM's model may well change with time.
A DM learns about his particular decision situation and

. environment as follows:.

1. He makes a decision (chooses a'caurse of action) on
the basis of all information available to him;

2. He mdicts some probable outcomes;
3. He compares actual resulting observables against his

predicted observableOfeedback learning);
'4. He updates his total medal of the situation as a

result of this process;
5. He returns to step 1.

For any problem environment, a DM attempts to fulfill
two main objectives:

1. To choose the "best" course 6r ittion (co.a.)
according to some criterion given his-state of
knowledge;

2. To learn the most about the total existing.situation
from the decisiov. n-making process.

It is important to note that a DM,has these two main
objectives in choosing a course of action. "Classical" diet-
sion theory says that a DM always chooses that c.o.a. that
maximizes some criteria. This is a considerable oversimpli-
fication, and the DM in fact does not automatically choose
the c.o.a. with highest' expected return. This is true for ct
least three reasons. First, beciuse the DM 163, be's.unsure of
his estimates; second, he may wish to learn more about thf )

total situatiol-ty executing alternatives other than the one
with highest exPetted return; and third, the situation may be
'changing with tinle, or if not the DM must generally assure

et
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himself that it is a static situation.

Learning from any c.o.a. executed is in fact a very im-
portent objective of decision-making. The DM does this by
monitoring the outcomes resulting from the decision. This
feedback updates the DM's data base upon which decisions are
based. Given the outcome of earlieridecisions, then flow will
the DM update his data base? If the outcome data matches the
GM's expectations, then his confidence will rise even though
there may be no other change in his estimates. However, if
the expected and actual results vary, then the DM wil\ incor-
porate these new data into his current estimates. He learns
from the deviation between his expected values of the out-
comes and the actual values. Learning is similar to sampling
from a distribution and predicting the underlying theoretical
distribution. The better the DM's learning capability, the
better his expected performance. The seam of learning up-
dates the DM's stateof knowledge, with input arriving as
either external or feedback data as illustrated in Figure 1.
Learning increases the DM's confidence in his perception of
the decision situation. Learning more about a given situa--"---
tion further removes uncertainty by giving the DM a better
estimate of the vari us possibilities open to hinOr

Decision-Maker Uncertainties

The uncertainties with which a,DM must cope at any given
time can be classified into three categories: state of
nature uncertainty, executional uncertainty, and goal uncer-
tainty. The states of nature encompass the uncontrollable
external conditions that will determine the various outcomes.
Pepending upon the decision to..be made,.they might,intlude
for example weather, economy,. competitive environment, gov-
ernmental regulation. The more 'knowledgeable the DM is of
the probable current e ironmental conditions (i.e., the
prevailing state of natu e more effectively he can make
decisions.

Executional uncertainty a ?pears in two ways. First the
DM must identify the c.o.a.'s available to him - his options.
Second, he must determine likely outcomes foreach c.o.a.
under consideration. If any of five outcomes, for example,
is possible for a given c.o.a., then what is the probability
that a particular one will occur? The DM must determine
these prohabilities of occurrence of various outcomes for
each c.o.a. This represents his best approximation to the .

actual situation. For any complex system, the relationship
between outcomes and courses of action is probabilistic and
not deterministic even if the state of nature wfie known with'. .

certainty, In other wordb, executional uncertainty is an
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inherent part of the decision-making process.

Lastly, goal uncertainty relates outcomes to goal-
achievement. The DM must examine each outcome considered and.
evaluate it in light of his goals: i.e., he must (if he
to be successful) recognize the value or lack thereof of 4ch

possible outcome to the attainment of his particular goals.
L

Each of the unFertainties discussed has both a structur-
al and relational c6ntext. The DM has structural uncertainty
about the number of re).1evant states of nature, the number of
viable alternatives, and the number of outcomes that may
occur as a result of executing the alternatives. Any struc-
tural deficiency will degrade the DM's performance; e.g.,
not considering a certain c.o.a. or not knowing that a given
outcode may result will exascerbate the difference between
the Dilta expected andactual performance.

Onep the structure is identified by the DM, 1e must then
resolve4e/atione uncertainties. What is the probability a

given state,of nature prevails?2, at is the probability that
a particular c.o.a. will result a specific outcom^? What
is the value of each oytcome rel tive to goal attainment?

Some Examples

Let us now illustrate typical decision situations and
specifically i4entify the uncertainties facing the DM.

Consider first the case of a family physician, the
decision-maker. His decisions relate to proper diagnosis and
treatment of the ailments of his patients. An ill patient
visits his physician with a set of symptoms. The physici,n's
first step is to identify as best he can the illness giving
rise to these symptoms. The illness is the prevailing state
of nature. Inasmuch as many diLeases may have overlapping
symptoms and give rise to the see of those symptoms experi-
enced by the patient, identification of the,specific illness
clearly is probabilistic.

The Aext step is to identify a treatment - the course of
action. E ch treatment will have a number of effects, most
of which re knoun to the physician only probabilistically -
even if he knew with certainty the precise illness (state,of
naturo)" For example, a particular medicine may have unex-
pected side effects. Instead of curing the patient new

osymptoms may appear or old ones may be exascerbated. ..This is
executional uncertainty.

12
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The symptoms are given a value structure by the doctor
(and by the patient also). Some symptoms are obviously of
little interest, and some are vital to patient health. Note
that the symptoms are the only observables. When the symp-
toms are measured,they become data and perhaps.information.
Blood pressure, for example, is'a physical manifestation,
whereas it becomes data when measured. Further examination
of the patient provides information to the physician concern-
ing the actual effects of the treatment in comparison with
the expected effects, and if these differ a new course of
action may now be chosen and executed thus repeating the
entire process. This illustrates the feedback involved.
Note that this iterative process ft the only way a physician
as a DM can learn more about the entire situation and in

particular the effectiveness of various treatments.

A second example of some current interest which illus-
trates our model and corresponding uncertainties involved is
that of the economy cf. the United States. The observables
are the rate of inflation, unemployment, growth of the GNP,
money supply, etc. The states of nature are inflation,
recession, growth rate, energy availability, etc. These are
dlearly all probabilistic in nature and of course, never
known with certainty at any time. In order to achieve some
goal, which may be a specific growth rate or a reduced
unemployment or a stable economy, certain courses of action
are taken by the Government, the DM. More money may be made
available to consumers by lowering taxes, a Government-
financed job program may be undertaken, interest rates may be
changed, etc. The relationships of these courses of action
to the observables is probabilistic, and economists can speak
only in terms of probabilities of certain actions having
certain observable outcomes. This is, of course, the execu-
tional uncertainty which exists even if the state of nature
were known with certainty. The goal structure is, of course,
important and changeable. For example, does the President
want to control inflation or cut unemployment? Which is more
important (has the higher value structure)? ,

The outcomes are measured periodically and the results
(now data) are reported to the President who examines the
observable outcomes in comparison with the predicted out-
comes. This is feedback. On the basis of his knowledge of
the situation (his predicted model) and the data obtained,
he readjusts hi expectations and may choose a new course of
action, and thus he reiterates the process. Again. note that
this iterative process is the only way to learn about the
entire situation and the effectiveness of various courses of
a-tion.

13
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Model Representation

This decision-making process can be analytically model-
ed in a number of different ways. One procedure that appears
to represent this situation well and which can be,formally
manipulated uses decision matrices as shown in Figure 2.
These matrices are both of dimension.m by n to correspond to
the m alternatives and n outcomes under consideration by the
DM. An additional dimension should be added to each matrix
ie.1., m by n by r) to express the r possible states of
nature. Extending the model to consider other states of
nature is straightforward and appears to add little to the
discussion herein, so for simplicity we consider only one
state of nature in the remainder of this paper. We define
the matrices W and V to be the decision state of the DM. The
decision state relates to a particular decision, is unique to
each DM, and will :Mange with time.

The W matrix describes the DM's executional uncertainty.
Element w. represents the DM's estimate of the probability

that execution of the i-th alternative will result in the

j-th outcome. We denote by W the matrix describing the
actual probabilities for the executional uncertainty of the

decision situation. Each element w
ij

of matrix W repre-

sents the actual probability of occurrence of outcdme j if
alternative i were to be executed. This is an aposteriori
probability in the standard sense and represents the fraction
of times outcome j would occur if alternative i were executed
many times. We repeat that these matricesas indicated are
for a single state of nature. There would in reality be a
third dimension of dimensionality r for the different states
of nature.

The decision-maker develops his estimates of the W7.0 ..tS

on the basis of experience and whatever data or information
he has available. These are his best estimates of the
A

W
ij

's. The more "expert" the DM is the closer his
2.0

should be to the w
ij

's.

If
w,.

= W
ij

V i,j, then-the DM has correctly assessed
I.7

the consequence of his possible actions. If m < m , then the
A

DM is unaware of certain courses of action; if n < n , then
one or more outcomes may occur of which the DM is unaware.

If m m , then the decision -maker believes that certain

14
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courses of action are viable when in fact they are not. Sim-
*

.

ilarlyforn>n.l.leseethat.tw .. for' some i,j sug-

gests

tj

*
*

+
*

gests a relational uncertainty; n f n or m + m indicates
structural uncertainty.

There is a value for every possible alternative-outcome
pair. Therefore a value matrix V, also of size m by n, can
be superimposed oer.the decision matrix W. Each element
v.. of matrix V represents the DM's estimate of the value of

outcome j as a result 'of executing alternative i. Note that
the value is a function not only of the outcome but a]3o of
the course Of action chosen. The following examples
illustrate why this must be 'so.

Consider the situation where a document from a collec-
tion is chosen on some basis co be relevant or non-relevant
(the c.o.a.). 'If it is chosen to be relevant and it turns
out to be relevant (the outcome), then the set of {c.o.a.',
outcome} has a particular value to the DM. If, on the other
hand, the document were chosen to be non-relevant and it
turns out to be relevant, then the value to the DM of this
set is quite different from the previous situation and is in
fact negative.

Consider the simple betting game of flipping a coin
(heads or tails). The value matrix (if we win or lose a
silver dollar) is as follows:

Heads Tails (outcomes

Alternative
:Heads $1 -$1
'Tails -$1 4$1

Value Mitrix

Clearly the outcome values depend upon the alternative
selected.

Consider also a three alternative model where the op-
tions are to buy, sell, or hold a given stock. The outcomes
are that the stock price goes up, down, or remains the same.
Presume that the first outcome occurs: i.e., the stock price
Increases. Considering our three alternatives, we observe
the following: had the bM purchased some of this stock he
would have realized a profit: had he sold some of this stock
he would have realized a loss: had he done nothing he would
have realized neither profil. nor loss. Hence we see three
values for the same outcome; each is alternative-dependent.

16
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Currently for simplicity we assume V = V , where V
denotes the actual value matrix: i.e., the DM correctly

knows the value of each outcome identified. Removing this
, assumption adds another dimension to DM learning. Full
i generality, as we have indicated, considers V to be of size
m by n by r for the r possible states of nature. It follows
then that"the value of an outcome depends also upon the
existing state of nature, which may change with time.

We have chosen to use an expected value model for
evaluation of the matrices., By this we mean that the
expected value of any c.o.a. is computed as the weighted
average of the outcome-value pairs. Given the W and V
matrices which describe the decision state of the DM, one can
compute the DM's expected value of each alternativ- as
follows:

EVi
AEI

w.. v.. (1)

Other procedures for determining values of c.o.a.,'s can be
,,used, but the expected value model is reasonable and tracta-
ble and thus convenient to use.

The m EV's computed represent the DM's assessment of the
expected values of the m alternatives. The actual expected

value of each alternative we Aenote ty EV This value is

obtained by using elements w
ij

of matrix W for the DM's

witivaluesinequation(Oabove.TheEVithen represents

the average outcome value which would be expected if alter-
native i were executed many times. The DM does not know the,

4

value of EV .; else he would simply choose the alternativu

with the highest EV and thus-maximize his teturns. The
4

closer the DM's EV vector is to vector EV , the more correct
his assessment of the situation and the better decision maker
he should be.

Our current model considers only positive EV values:
Vi, EVi > 0. .We would also like to treat negative expected

values for the following reason: the DM must be penalized
for choosing a bad alternative. Hence his outcome value for
this alternative must be negative, as indicated in the
relevant/non-relevant document example described earlier. If

enough executions of alternative k will result in a loss to
the DM, then the resultant

EVk
will be negative. Negative

17
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terms in our formulations cause certain mathematical problems
which must be created. We plan. in the near future, to
expand our model so that negative EV's can be considered and
handled by the model.

' Making a Decision

The DM makes a decision by selecting a course of action
to execute. Just how should he make this decision? Clearly
it will be based upon all the data he has shred regarding
hid current assessment of the decision state: the V and 41

matrices. We have just shown how an expected value vector,
EV, can be derived from the decision,state. If the. DM is to

make a rational decision, then it must be based upon these
data. Although.we do not impose a specific decision strategy
upon the DM, we will make one reasonable assumption. This is
that the DM will prefer alternative i to alternative j if
EVi > EV..

The DM must establish a probability for choosing each
c.o.a. In classic expected value decision theory,'the DM
will always choose the c.o.a. with the greatest expected
value. But selecting the alternative of highept EV is
generally the best strategy only if the DM hasl virtually full
confidence in his derived EV values. The DM may have consid-
erable structural or relational.uncertainty regarding the
situation. Also, he may wish to learn more about the total
decision situation. The only way he can do this is to sample'
c.o.a.'s in addition to the one with maximum EV. Then he can
compare predicted and observed outcomes to learn and.re-
evaluate his EV estimates. Furthermore, the situation may be
changing with time and the 'DM simply may not wish to rely
completely upon his previously computed EV values.

Thus we desire a method by which a probability can be
associated with each alternative. representing the DM's
probability of selecting that alternative. This distribution
should have the properties that

ni

a) E Na.) = 1;
i=1 t

b) EV. > EV. N a.) .#1)(a.);

c) no DM confidence in his knowledge of

ET's => Vi .) = m ; that is, with no

information about the 'values to be expected,
the DM will select a c,o.a, at random;

18
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d) total DM confidence in his knowledge of
Ers. => Na.) = 2 for maximum EV. and zerq

for all others.

We propose the se4ection rule

P02.7)=(EV.41C / E (EV 1C ) C is a non-negative real (2)

k=2

for situations involving positive EV values.

' The variable C in equation (2) above is called the
confidence factor: the higher the value of C, the higher the
DM's confidence in his knowledge of the EV's. If C = 0 then
P(a.) = 2/M Vi and we have the random ale. The DI$ haq no

confidence in his current state of knowledge so he prefers to
make a random choice rather than let his Ev's determine which
c.o.a. to execute. At the other extreme, C => co results in
the classic decision theory rule: the alternative with
highest EV is executed every time.

The following lemma formally demonstrates that this
selection rule dues indeed satisfy the four essential
criteria noted above.

Lemma 1: The selection rule P(a ) 66V1C /' E (4gvdc
v k=1 '`

or C, EV1.. z. 0 satisfies the four requisite properties for

establishing the DM selection distribution.

Proof:

m
a) E Kai.) = 1.

i=1

Let Nat ./ be defined as in equation (2).

m
Then E Pfa,) *Jr E [(.4FV.) c / E

\i=2 i=1 v k=1

C m
Hence E P(a.)*= E (rv.)C / E (EV 1

c
= /.

i =1 t /AT/ v

19
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Pb)
E V. > EVE. => Flat) 1. (a

J
.).t

Let EV. > EV . .
j

) J
Then (EV.

t
C > (EV.)C ) C z; 0.

m re

' Hence (EV.) c / E Wde. 1. (EV .)
c / E (EV ) c;

k=1
,

3 lc-1 k
i.e., Mi.) > Plai).

c) No DM confidence in his knowledge of

EV's => V. P(a.Z.) = 1 .
RI

c

Let C = 0.

ln0Then we have V. Pla.) = (EV.) / E (E1V.t
t

. t
k=1

in
Hence V.

t
P(ai m

) = 1 / E 1 = 1
kr:4

d) Total DM confidence in his knowledge oft
EV's => 3 i ) P (at =.) 1 and all other P(a

k) = 0.
Assume 3 i )iik EVi > Elik for i + k.

Then consider the term P(a..t ) as C 4 0.

Um Zim
C PIC

E->
co M.) = C + co EEV / (EV )1t ) kk=1

Urn
= C 4

I
co // E (EV )c/

(EV.)
k=1 k 1

= C .9. co 2/ E Esvit)el (Evil).
Zia, m

k=1

But A + i
C +
1151

co
(EV

k t
)C/ (EV.)C = CZ (EV

k / EV.)C = 0,4 co

since EV. > EV
k .

e
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Lastly""1"7:C110S(E"C"87/

V

C

C ea EV C =k11
_ (,1\C

Therefore Nal:1 = I andb9 a) above,

Vk ..15(aki = 0.

Decision-Maker Learnin&

In our approach, we use equatiliCs (1) and (2) in order
to calculate Expected Values and Probabilities of alterna-
tives available to the DM. /The following sequence of events
then occurs. This procedure is a general one for all ,

expected value models and is not dependent upon specific
formulations of the probabilities. In actual practice, the
DM may determine probabilities mainly by judgment rather
than from calculation.

1. DM estimates or predicts EVi for i = 2, 2, ..., m on the

basis of all of his past experiences using equation (I);

2. DM establishes Plait for i = 1, 2, ..., m from his

estimates of the /NV. and his current level of confidence

in the data. In our approach.he uses equation (2) to
derive these estimates;

3. DM now executes an alternative, k, in accordance with his
estimates of the probabilities deYeloPed in step 2;

4. Given the prevailing state of nature, some outcome occurs
as a result of executing alternative k. Remember that
the DM is only prbabilistically knowledgeable about
which outcome wil' lccur.

5. The resultant out.ome is now fed back to the DM in
accordance with Fi .ure 1, permitting the DM to upgrade
his assessment of the situation.

6. On the basis of this feedback information the DM updates
his estimate of EVk and his assessment of the probabili-

ties of the outcomes for that alternative. Note that the
DM's assessment of the decision situation and all thr.

21
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values thereof are a function ot his previous experience
and the data obtained from the decisions he has made.

7. Go back to step 2, update the P's using the new EVk and
continue.

k

Step 6 in thq above characterization of DM activity,
using feedback data to update the DM's state of knowledge
(or decision state), is what we call "relational learning".

This learning can be considered 'to be effected by making row
changes to the W matrix. Or, ia4 mom macroscopic sense, we
simply alter the current EV assessment corresponding to th
alternative executed. In either case (macro or micro) the ,

end result is an updated DM estimate of We, No other EV's:
$ are altered since only one c.o.a. has been executed; ,the

( feedback data clearly relates only to the alternative
executed. Of course from equation (2) we note that all his
probabilities are altered due to a change in one EV and/or a
change in his confidence.

Learning. can be modeled by ad3Jeting the DM's expected
value of the alternative just executed. The value of the
observed outcome is averaged into the DM's EV approximation
in some way. A number of learning rules could be used to
update the EV's. We have, for convenience, chosen the
following learning rule inasmuch as it does seem to be
descriptive of the actual process. In this situation c.o.a.
k has been executed at time t resulting in the actual value
V (t) occurring. The DM then updates his old estimate of the

expected value for c.o.a. k by

EV (t4-1) = Cl-X EVk(t) + X
k
it) Vk(t),(t) 0 < X < 1. 113)

That is, the expected value of alternative k at time t#1 is
simply a weighted average of the expected ,value at time t and
the actual outcome value obtained at time t, Vk(t).

The learning parameter ) should be a decreasing functim
of time and confidence. For instance, a possible definition
of X (timight be:

X (t) /4(C #1) x number of Was for kJ. (4)

Variable Ck is the DM's confidence factor in his estimation

of EV
k

and goes from 0 to infinity.

22
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Note that when the AM has little confidence in his
estimates, or when he has little data on which to basean
estimate, his learning will be large telmost one) and when
his confidence is-'high the learning'will be small (almost
zero).

20
V
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Two importantvspects of this learning algorithm should
be noted. Tirst.,-it shopld be clear that learning tauses a
chat action: altering a row of the'N' matrix alters the
res ective EV which in turn alters the DM's probabilities for
selecting an alternative (by our selection rule).

.Secon#, the DM's confidence plays an important roles in
both learning and'selection. Although the parameter,.confi-
dente, is used in both equation (2). for selection procedure
and equation (4) for learning, the two may differ inasmuch as
they describe different phenomena. Furthermore, in equation ''s\

(2) thebvariable C is'an overall confidente in the entice ti

situat'lon, whereas in equation (4) the variable Ck applies to

the confidence that a,DM as i,n his. knowledge of the outcome
of a particular c.o.a. Further research on this matter-, both
conceptual and experimental, is.underway.'

The Basic Information Measure

Given our model of informatiokflow and analysis. we can
now develop definitions of importank terms whidi can then be
quantified and measured and which are of course consistent
with the basic theory. We first define our fundamental
measure of information from the standpoint of effectiveness.
All levels of information have one important point in common:
information reduces some uncertainty. Uncertainty in the
effectiveness sense s4ould relate to the DM's choice of a

.c.o.a. How certain-isithe DM about which alternative should
be chosen?

The uncertainty in choosing a course of c n clearly
relates directly to the DM's probabilities of exec ting each
course of action: For example, if all of the prob bilities
are the same, then the DM is totally uncertain wh ch alterna-
tive should be selected. At the other extreme, if the DM is
completely certain as to his course of action then for some

Pla.) = 2 and all sit the other probabilities are zero.

Thus we choose the variance of the P's as a basis for our
measure of information. Note that the variance is zero when
all of the P's are the same and a maximum when one P is unity
and the others are zero.

`I 3
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The mean -Square variance of the probabilities, 0
2
(p), is

by definition:
m ..

02
(P) = E [Plat.) - u(P))

2
/11/2 (0

1:472

. i

c

and the mean, U(P), is:
.

I
p(PI = t Nat.], /n7 = 1 .=i

(6)

\ /Ts,'

. .

% whsre
\

m is the number of viable courses of action.'

.. ny sic measure of information4 'shoul possess a number

of fdodamental picrpemies. ,First, it should e defined in
terms of some fundalental unit of meksmre. It should be at a
maximum when the variance of the element s is maximal, and it
should be at a minimum when the variance is minimal. These ;

bounds should be well defined. The measureshould be
indifferent to the order of con eration of the elements.

must be stable; i.e.; the cons deration of an additional
c:4.a. of low probability should qo have a significant \

1

. effect upon the measure. Finally, the measkre should be , I

sequentially additive. -Whether applied once to the entire
set of elements or respectively to a set of mutual,
exclusive and exhaustive subsets,N.the measure should yield
"the same result. A measure9:d information which possesses ---,
the aforementioned propertpeS would provide a sound basis f
our theory of effective information. .c c

We hilve indica d that any effectiveness meal re of
infotmatqn must relate to the variance of the Dle4 probabil-
ities'of selection of the alternatives. However, it is not
the Variance directly but the normalized variance which is
important. The simplest way to consider the variance of a
population in a normalized form is to divide it by the
square of the mean, ,that is to consider the r.m.s. deviation
in terms of units of the mean. It is clear that we must
9onsider a normalized variance since a given variance about
the mean will be much less signiffcant'when the mean is large
than when the mean is small.

Hence we define our fundamental measure of information
tc be: \

/ = a
2
(P)/p

2
(P). (7)

2
Since 11 (P) = //M -(see eqnation (6)), we observe that this
measure relates the variame to m, the number of course* of
action.

ra
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Referring to equations (5), (6), and (7), we see that
1 :

q A)0 (P)/u/O) = [IE (Pk! ) - 1)2; 02
m2 2

Ii.,./ i m

,
m
E .5

2 - 1 .
i=2 */*

This quantity possesses the desired properties for an infor-
mation measure as we now demonstrate. Thus, we define this
quantity to be the aiount of information in the decision
state, viz

m
I =- m E Na.) 2

- I .
V-.1

Properties of Information Measure

(8)

The information meaure as defined possesses most of the
desired properties'of a fundamental measure of Informationeffectiveness.

This quantity has a minimum of zero when'all the P(a.)'s
are equal to (pure chance). This is complete uncertainty.
The quantity has a maximum of m - 1 in the case of complete
certainty where one of the P(ai)ss is one and the others arezero.

When there are only two possible courses of action, the
quantity I will assume values from zero to one. It will beequal to one under condition of certainty, i.e., when the
probability of choosing.one'course of action is one and theother probability its zero. ,Accordingly, we will define theunit of information in terms of a deterministic two-choice
situation. This unit we call a binary choice unit, or b.c.u.

When there are m possible courses of action, theft themaximum amount of information from equation (8) is seen to bem - 1 b.c.u.'s. This is In agreement with a) well -known
combinatoric principle that a minimum of m.;=, 1 deterministicchoiCes from pairs Jf alternatives is required when thereare r alternatives :o consider. More explicitly, if m .L" 1choices are requirea and themtaximum amount of information ineach choice is one, then the maximum amount of information ism I. Analogously the minimum amount of information iszero.
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Clearly the measure is indifferent to the order in which
the elements are considered. Since addition is associa-

tive, the P's can be summed in'any order yielding a unique
reault.. Hence the alternatives can be consideredlin any
order.

The consideration of additional courses of action of low
probability have an insignificant effect upon the measure.

This is seen from equation (8) inasmuch as the.sum of the P
2

will be essentially unchanged with the addition of such a
c.o.a. However, the m will change by one and thus the rela-

tivetive information change is proportional to . Thus the

addition of a new c.o.a. does not significantly alter I for
reasonable size m.

An additional question to be considered is the additi-
vity of our measure. The measure itself clearly does not
possess simple linear additivity since it is based on a non-
linear distribution, e.g.. the variance. This must be the
case inasmuch as the probability of choosing any course of
action must depend on all the other courses of action. How-

ever, the measure does have an important additivity property
,Involving expected values.

The probability of choosing any course of action is a
function of the decision-maker's expectation of all the
valnps as we have seen in equation (2). The values (or the
expe4tation of the values) on the other hand are independent
of each other. We show below that the values of subsets of
the courses of action are indeed additive and can be consid-
ered separately. Thus in going from the values to the
vobabilities to information'we show an important additivity
property. Hence the decision-maker's estimate of performance
(defined in equation (12) below) for disjoint subsets A, B of
the courses of action has the following additivity property:

The DM estimate of performance with sets (A, B) equals
his estimate of performance for set (A) multiplied by the
probability of selecting set (A) plus his estimate of
performance for set (B) multiplied by the probability of
selecting set (B). Thus in order to add information in dis-
joint sets we must first consider the fundamental values.

The proof of this statement follows:
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Consider set S of alternatives al, ar am and its

associatedMand P
S
(a.) for i = 1, 2, ..., m. Then by

definition from equation (12) below

D P
S
= E p (c.) EV. .s t

Now consider a partitioning of S into disjoint subsets A and
B whose union is S. As order of evaluation for DP is

unimportant, rename the alternatives so that
a1, a2, ..., ak E A and ap41, ak42, ..., as E B. Now

consider computing DPA: note that E Ps(ai) # 1, since
i=1

are to be considered then
that they sum to 1. Hence

k < m. If only these alternatives
they must be factored uniformly so

we set P
A (a ) = Ps(2.)/ E P (a )'

o=1
which uniformly irireases

the probabilities for alternatives in A ) E P,(a.) = 1.
i=1 t

Thus DP = E P (a.) EV. = E P (a.) EV. / E P 62.) .A A t t St t Sjiii j=1

A similar term is derived for set B; i.e.,

m m m
DP = E P (a.) EV = E p (2.) Ev. / E P (a.) .B Etti Stt. S o-;=k4-1 i=! 'l J--K +'

If a DM now wishes to combine these two evaluations to con-
sider all m alternatives collectively, then it is only
natural to consider the sets A and B as two alternative sets
with associated probabilities of selection P(A) and P(B) and
estimated values DP and DP

B'
Thus,

PPAUB = P(A) x BP
A -0- P(B) x DP

B
But

P(A) = E P,(a.) and P(B) = E P (a.). So substituting
i=i ') .1=101

S t

P(A), P(B), DI'A ana Dpli. into our equality, we have

27
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DPAus = E Ps(2i)
i=2

E P (ezS

Z P (a.)
i=1

Z

i=2

.)

EV

Ps(ai) EVi / E Ps(2j)

j=1

P EV. / E
1:401 S J=k#1

DP
I. .9

P (a.)
S j

1

Amount of Information in a Data Set

.

A measure of the amount of information in a data set or
message can be arrived at by computing the difference in the
amount of information in the decision state after and before
receipt of the data. That is, the amount of information is
determined by considering the impact these new data have on
the decisioi-maker's decision state. In symbolic terms,
I(D), the amount of information in data set Do, is

1(D) = Iol - t

where r
t+1

and r
t
are the amounts of information in the

decision state after and before receipt of the data set.

(9)

It should be noted that the amount of information in a
'data set may he either positive or negative. In general,
positive information sharpens or refines the decision-maker's
understanding of the situation in that it either reduces the
number of structural components in the.model or reduces the
dispersion in one or more of the various probability distri-
butions in the model. Negative information, on the other
hand, either increases the number of structural cAmonents
(e.g., the addition to the model of at previously unknown

alternative or outcome) or increases .he dispersion in the
various distributions. Negative information, despite a
possible connotation of the term, does represent informaticn
that is of significance to the decision-maker.

This measure will in general vary with time; it will in
general differ with different ON's and with different
situati ns. This variation is consistent with the fact that
data can of be evaluated out of context. For instance, a
given do ument which is relevant to a scientist working on a
problem nuclear physics is probably non-relevant to an

28
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ecomasist. Knowing next month's projected output is of value
to a DM worried about finding buyers or prOjecting future
output, but after that mbnth has passed the DM will use the
actual output data, not the old projections. Lastly, each
DM is different and thus may react differently to the same
data; hence a different I(D). This is a measure personal to
the DM that is time and situation dependent.

Related Measures

We have now defined a quantitative measure of the
amount of information in terms of the fundamental unit,
b.c.u. From an'effectivenass standpoint, we are further
concerned with the value of the informatioi. In order to
establish a measure of the value of information, we first
must define a term which describes the capability of a
decision maker to achieve his goals. Such a term we will
call decision-maker effectiveness or ONE, We can then define
the value of information in terms of the correAponding change
in the IME. This 'All then be a measure of the effectiveness
with which the DM uses the information available to him.

We will define ME in terms of the average expected
performance of the DM at any given time. The DM executes the .

c.o.s.'s in accordance with his probability distributio.

The average outcome of alternative i is EVi , the actual

expected value. Thus, average DM performance, AP, can be
expressed as:

AP = E Net .t 1 EV.* .

t
i=2

(10)

If the DM makes a series of decisions with the-se probabili-
ties, then his performance, on the average, will be that
projected by AP. Actual DM performance at time t is a
specific value Ilk(t) which is obtained from the alternative

executed, ak. Note that V
k
ft) will in fact be one of v,,,ss

gj

associated with alternative k as seen from observation of
Figure 2. The values obtained by execution'of c.o.s., ak,

will vary according to the probabilities defined by the

starred matrix and will vary about the mean EVk with a

variance determined by the values 'and their probabilities,
Observation of each row of the value matrix indicates the
extreme values.

29
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Because of the fluctuations possible in actual DM
perforbance, we define the decision-maker effectiveness in
terms of the average DM performance as compared to the maxi-
mum possible DM performance. The maximum possible DM
performance occurs when max h711 *is chosen with certainty.
Thus

DME = AF/max(EY
k

),

m
DYE = E Flat .) (EV. )/Max(EV

k
).

i=1

DNE is a dimensionless unit which goes from zero to one and
tells us how well the DM is able to meet his goals. Mote
that AP is clearly additive in the same way as we showed
above for DP, the DM's estimate of his performance.

A rational DM should increase his DME with time on the
4

average, as max tE7k ) is constant and average performance

(EPla) ) should increase as feedback data enhances the
i t

DM's probabilities of choice, P(a.). We see that if

P ( a
k
) = 1 for the maximum valued EV

k '
then DME = 1, the

maximum.

Of course, the DM does not know the EV 's with
certainty. He can only approximate them probabilistically.
Therefore, the DM can only estimate his Maud, in fact,
his best approximation to his performance is given by the
term we define to be the DM expected performance, DP. That
is

DP= E Fla.) V. ,i 7, 2
(12)

where EV. is the DM's estimate: of EV. . As the DM becomes

more expert, his PP approaches AP.

The DM does not know the max EV and therefore he can
only estimate his me from eqn4tion (12). This would take
the form of DP divided by his estimate of the maximum (EVi).

Every decision maker has a perception of his own effective-
ness for a given situation. We are interested empirically
in relating the DM's estimate of his effectiveness to that
calculated from our equations above for DME and DP. We are
planning both simulations and experiments to determine the
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similarity of these two terms.

Value of Information

Decision-maker effectiveness, as defined in equation
(11), provides the basis for our measure of the value of
information, Q(D). As our measures are concerned with the
effectiveness level of information, it is natural to define
the value of information to be related to its effect up6n the
performance of the DM. Did the new data increase or decrease
the DM's performance, and by how much?

Because of the variations possible in actual DM per-
formance at a given time, we believe it is only meaningful to
consider the performance on an average basis. This, of

course, is accompanied with a mean square deviation, 0
2

about
the average. Hence DMEt#1 DMEt would show the change in

DM effectiveness (see equation 11) due to information
-eceived. Thus we define O), the value of the information
in data set D, as:

Q(D) = dRE DMEt ' (13)

The measure DAIE is well defined and ranges frOm 0 to hence
our value measure typ4 ranges from -1 to +1. Data that
results in decreased DM performance are of negative informa-
tion value; if they do not effect performance, then they are
of no value, and Q(D) = 0.

The value measure Q(P) is described in terms of a basic
unit: ME. It has prescribed upper and lower bounds that
are consistent with the intended meaning of Q(D). The
measure is associative and additive if the AP is considered
directly. Thus, this measure, QUO, possesses all of the
properties we require of a fundamental information measure.

Hence we have d &veloped two fundamental metrics which
measure information amount, r(P), and information value,
Q(D). While the quantity 1'(D) shows the change in the DM's
plans for dealing vith the situation, the quantity Q(D)
defines the value accrued from the DM's change in probabili-
ties. These two measures are thus distinct, yet they are
interdependent. However, the relationship between them is
quite complex. Information amount deals with the DM's
actions; information value relates to DM performance.
Further research will determine under what assumptions
general relationships can be guaranteed.
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Summary of Definitions

29

In this paper we have developed a number of important
definitions characterizing information and decision-making.'
This section reviews those definitions so that they can be
considered together in a meaningful manner. We list each
term, describe its meaning, and repeat its definition ap
given previously.

a) Expected Value of a c.o.a., as.: the expected value of an

alternative is the weighted average of.the outcome
values.

m
EV. = V..

tj

b) Selection Rule for c.o.s.'s: the probability of
selecting alternative i is proportional to its
relative expected value raised to the DM's
confidence.

C m
F(a.)... (EV ) / E (EV

k
) .

k=1

c) Learning Rule for expected value of c.o.a. 61k): the

new expected value of alternative k, given the
outcome value of a prior execution, is a weighte.'
combination of the old expected value and the
observed outcome value.

(I)

(2)

EV
k
(t4.1) = Cl-X

k
(t)] 'Vk(t) + X (t) Vk

k

d) Information in the Decision State: the amount of
information in the decision state of the DM in
b.c.u.'s is

m E P(42 .)
2

- 2
2:=1

43)

(8)

e) Information Anoint: the amount of information in a data
set P is defined as the change in the information
of the DM's decision state after and before
receipt of the data.

I(D) = I
t4.1

- I
t

.
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f) DM Actual Performance: actual DM performance at time t
is the actual value of outcome j, which is obtained
from the alternative executed, ak:

DM actual performance (t) = Vic(t) = vki .

g) DM Average Performance: the average performance of a DM
is the weighted average of the actual expected

outcome values.

A'= E M) EV .

i=1

h) Deci4Sion-maker Effectiveness: the effectiveness of a DM
is the ratio of his average performance to the

tbaxionok expected outcome value.

( 10)

DAIE = E P(a.) (EV. lAmar(Eirk) .

2:=1

i) DM Expected Performance: the DtRs estimate of his
average performance is the 4eighted average of his
expected outcome values.

nt

DP = E P(a.) EV. .
i=1

j) Information Value: the value of the information in a
data set D to a given DM is defined to be his
change in effectiveness.

Q(D) = DAJE -
t

.

Conclusions and Further Research

(12)

(13)

The fundamental goal oUth4s research is to develop a
comprehensive, usable theory of information at the effectiVe-
ness level. Thus far we have defined a detailed model for
information flow and analysis. We have suggested that most
decision-making situations can be modeled within this formu-
lation. We have developed an underlying mathematical frame-
work to de ine the decision state of the decision maker:
matrices W From this framework we have algorithmi-
cally defin d p. cedures to model, we believe realistically,
DM data assimilation, DM selection, and DM execution of
alternatives. The entire model implies iteration many times
so that the DM can better estimate the decision state and
various associated parameters. With this framework we
believe that we can accurately describe the use of

33
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information in an effectiveness sense and the role of
information in the total decision process.

We have defined herein a number of important information-
related measures. Two of these of particular importance are
the amount of information 2114 and value of information Q(A),
which quantify the information in a data set V. Other
measures that can be derived from our model include the
amount of information in the decision state (I), decision-
maker effectiveness (VW, decision-makir expected perfor-
mance (N) and DM average performance (AP). These measures
provide us with a quantitative bssis for analyzing and
defining information flow and for identifying limitations of
this flow.

Continuing research involves establishing relationships
among these auoatities and the significance of eajh to the
,information flow process. We are seeking generalized infor-
mation relationships in an effort to establish fundamental
guidelines for information flow, analysis, stoiage and
processing. In addition, we feel that generalized rules for
making-decisions under various conditions - a decision
calculus.- will emerge from this model as well.

We are planning4o apply this theoretical development to
practical situatias and indicate how the quantities can be
defined, measured, and used in a practical way. In particu-
lar, we are developing examples using aibibliographical
retrieval system, a production control Situation, and a
general economic model.

r-,
Of courSe, of primary concern is the question of

validation in an empirical sense of our theory and measures.
We have developed a simulation model to verify some of our
basic measures and procedures and to determine their value.
Two versions of the simulation model have been implemented
in FORTRAN: a batch model and an interactive model. The
batch model is running on an IBM 370/168 and is being used
for running long repetitive decision situations with many
trials. Aggregate data from test cases are being studied to
determine if the results are consistent with' the, theory and
to filia further relationships between the basic quantities
defined in our information flow model. The interactive model
is running on f PDP-10 and enables direct input to be made
by a human decision maker. We plan to conduct actual experi-
ments using a document collection and real decision makers,
in order to tttablish the various parameters and their
validity.
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